Exercise 16

For the following exercises, the position function of a ball dropped from the top of a 200 -meter tall building is given by $s(t)=200-4.9 t^{2}$, where position s is measured in meters and time t is measured in seconds. Round your answer to eight significant digits.

Compute the average velocity of the ball over the given time intervals.
a. $[4.99,5]$
b. $[5,5.01]$
c. $[4.999,5]$
d. $[5,5.001]$

Solution

The average velocity is calculated by

$$
v_{\mathrm{avg}}=\frac{s\left(t_{2}\right)-s\left(t_{1}\right)}{t_{2}-t_{1}}
$$

Over the interval $[4.99,5]$ the average velocity is

$$
v_{\mathrm{avg}}=\frac{s(5)-s(4.99)}{5-4.99}=\frac{\left[200-4.9(5)^{2}\right]-\left[200-4.9(4.99)^{2}\right]}{5-4.99} \approx-48.951 .
$$

Over the interval [5,5.01] the average velocity is

$$
v_{\mathrm{avg}}=\frac{s(5.01)-s(5)}{5.01-5}=\frac{\left[200-4.9(5.01)^{2}\right]-\left[200-4.9(5)^{2}\right]}{5.01-5} \approx-49.049 .
$$

Over the interval [4.999, 5] the average velocity is

$$
v_{\mathrm{avg}}=\frac{s(5)-s(4.999)}{5-4.999}=\frac{\left[200-4.9(5)^{2}\right]-\left[200-4.9(4.999)^{2}\right]}{5-4.999} \approx-48.9951 .
$$

Over the interval [5, 5.001] the average velocity is

$$
v_{\mathrm{avg}}=\frac{s(5.001)-s(5)}{5.001-5}=\frac{\left[200-4.9(5.001)^{2}\right]-\left[200-4.9(5)^{2}\right]}{5.001-5} \approx-49.0049
$$

